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An individual malignant tumor is composed of a heterogeneous
collection of single cells with distinct molecular and pheno-
typic features, a phenomenon termed intratumoral heterogene-
ity. Intratumoral heterogeneity poses challenges for cancer treat-
ment, motivating the need for combination therapies. Single-cell
technologies are now available to guide effective drug combina-
tions by accounting for intratumoral heterogeneity through the
analysis of the signaling perturbations of an individual tumor
sample screened by a drug panel. In particular, Mass Cytome-
try Time-of-Flight (CyTOF) is a high-throughput single-cell tech-
nology that enables the simultaneous measurements of multiple
(>40) intracellular and surface markers at the level of single cells
for hundreds of thousands of cells in a sample. We developed
a computational framework, entitled Drug Nested Effects Mod-
els (DRUG-NEM), to analyze CyTOF single-drug perturbation data
for the purpose of individualizing drug combinations. DRUG-NEM
optimizes drug combinations by choosing the minimum number
of drugs that produce the maximal desired intracellular effects
based on nested effects modeling. We demonstrate the perfor-
mance of DRUG-NEM using single-cell drug perturbation data
from tumor cell lines and primary leukemia samples.

single-cell analysis | combination therapy | nested effects models |
intratumor heterogeneity | leukemia

Combination drug therapy promises to improve cancer treat-
ment by targeting multiple signaling and regulatory path-

ways maintaining tumor progression. As the number of potential
FDA-approved cancer drugs increases, the likelihood of identi-
fying effective combination strategies tailored to an individual
patient’s tumor increases. Several computational methods have
been proposed to identify the optimal combinatorial drug strate-
gies that rely on methods to reconstruct the tumor’s biologi-
cal network based on high-throughput genomic and proteomic
assays (1–4). These approaches and others are often predicated
on the idea that an individual tumor’s biology is dominated by a
single molecular network under the control of a limited number
of master regulators. While this formulation may be a feasible
approach for addressing tumor complexity, it can oversimplify
the characterization of an individual tumor, which is composed
of many different cell types, including different malignant cell
types, where each cell type is likely to be under the influence of
different networks and/or regulators. This more complex view-
point challenges the field of combination therapy by suggesting
that optimal drug combinations need to account for intratumoral
heterogeneity (ITH) at the single-cell level.

ITH is increasingly being recognized as a critical barrier to
overcome drug resistance. The most commonly recognized form
of ITH is the polyclonal nature of tumors whereby combination
therapy largely aims to target divergent clones. A computational
algorithm to address this type of heterogeneity by Zhao et al. (5)
demonstrates that targeting the predominant clonal subpopula-
tions is not necessarily the best overall strategy. A different type
of ITH often described as nongenetic may render even a sensi-

tive monoclonal subpopulation of malignant cells resistant to a
given treatment. In this work, we focus on identifying optimal
combination strategies based on the single-cell signaling hetero-
geneity, without necessarily addressing the source of the hetero-
geneity as genetic or nongenetic. We view this work as a step
toward a broader strategy that will ultimately account for ITH at
the single-cell level to optimize combination treatments for the
individual patient.

Assessing and measuring signaling heterogeneity at the single-
cell level has become possible for nonsolid tumors and increas-
ingly for solid tumors. Using mass cytometry (MCM) time-of-
flight (CyTOF), one can measure roughly 40 intracellular and
surface markers at the level of single cells for hundreds of thou-
sands of cells in an individual sample. Such single-cell data are
being generated to study the effects of intracellular signaling
changes before and shortly after treatment, thereby providing a
high-dimensional drug-induced perturbation response for a sin-
gle tumor (6, 7). Here, we assume desired changes associated with
intracellular signaling markers, before and after treatment, serve
as a surrogate for drug effectiveness. Several studies demonstrate
that intracellular signaling perturbations to short-term drug expo-
sure can be predictive of long-term drug response (8–10). Assum-
ing this association, we provide a formal optimization method
denoted as Drug Nested Effects Models (DRUG-NEM) to
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analyze single-cell single-drug screening perturbation data for the
purpose of identifying optimal drug combinations that account
for ITH. In the current context, DRUG-NEM is optimized to
select the minimum number of drugs that produces the maximal
desired intracellular effect, but the optimization criterion can be
easily modified.

A conceptual illustration of DRUG-NEM is given in Fig. 1,
where drugs are color coded by their intracellular effects: red
vs. green drug causes red vs. green intracellular effects, respec-
tively. The combination of the green and red drugs may result in
a variety of possible desired effects in a single cell (Fig. 1 A–F).
For example, use of the two drugs might result in intracellular
effects that are (i) disjoint (Fig. 1A), (ii) superset (Fig. 1 B and
C), (iii) intersecting (Fig. 1D), or (iv) dominant (Fig. 1 E and
F). Depending on the subsetting of the effects, eradication of
the single cell would require a single drug (Fig. 1 B, C, E, and
F) or both drugs (Fig. 1 A and D). Because a tumor is a collec-
tion of cell types, aggregating the drug responses across all of the
cell types would be necessary to identify the optimal drug com-
bination. For example, targeting the entire population of cancer
cells with red, green, and blue targets using only drug green +
drug red may miss cells with uniquely blue targets (Fig. 1G, Left),
making it necessary to use the red + green + blue drugs (Fig.
1G, Right). However, if the blue effects are shared with the green
and red effects, then using three drugs is suboptimal (Fig. 1H,
Left) compared with using only the red + green drugs (Fig. 1H,
Right). DRUG-NEM essentially identifies the optimal combina-
tion by subsetting drug effects from individual drug responses to
identify the minimal number of drugs with the maximal desired
intracellular effects.

Before applying DRUG-NEM, it is necessary to identify the
desired intracellular effects associated with drugs of interest and
identify surface markers that capture the heterogeneity of the
sample. Single-cell data, before and after drug treatment, are
collected and used to quantify changes in the expression of intra-
cellular markers across a panel of drugs. To process these data,
DRUG-NEM uses four main steps. The first step identifies the
subpopulations within the tumor that are likely to respond dif-
ferently to drug perturbations (Fig. 2 A–C), thereby accounting
for ITH. For the second step, DRUG-NEM computes the drug
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Fig. 1. Complexity of drug effectiveness for single-cell intratumor hetero-
geneity. Phenotypes from targeting a single cell within a tumor with two
drugs green + red may result in either (A) disjoint target effects, (B) green
targets effects being superset of red targets, (C) red target effects superset
of green targets, (D) disjoint and shared effects, (E and F) dominant effects,
(G) tumor requiring an additional drug to target all cells with blue effects
for maximum effect, or (H) tumor requiring only two drugs instead of three
drugs to target all cells.

effect in terms of the probability that a drug Sj has altered intra-
cellular marker Mi in each subpopulation k and this effect is
associated with a desired response. These effects are weighted
to produce the probability of a desired effect for each marker
in each subpopulation. In the third step, DRUG-NEM creates a
drug nested effects model (NEM) that accounts for the effects
for each marker across all of the subpopulations across all drugs
using a graphical model where nodes are drugs and edges define
shared or nested effects. The details for computing the DRUG
NEM are given below. Using this model, the fourth step of
DRUG-NEM is to rank all drug combinations based on a defined
scoring function. We have optimized DRUG-NEM to identify
the minimal combination of drugs that maximizes the desired
intracellular effects for an individual tumor.

We first analyze the performance of DRUG-NEM on simu-
lated data to demonstrate key aspects of the algorithm. Next, we
demonstrate DRUG-NEM’s performance on HeLa cells, a cervi-
cal cancer cell line, analyzed under a CyTOF-based perturbation
study with four different treatments: TNF-related apoptosis lig-
and (TRAIL), MEK inhibitor, pP38MAPK inhibitor, and phos-
phoinositide 3-kinase (PI3K) inhibitor. DRUG-NEM identified
TRAIL and MEK inhibitor as the optimal drug combination.
This finding was experimentally validated by measuring frac-
tional cell kill under the different drug combinations. Finally, we
demonstrate the application of DRUG-NEM on 30 acute lym-
phoblastic leukemia (ALL) primary patient samples that were
analyzed with a CyTOF-based perturbation study with three sep-
arate small molecules: Dasatinib (Das) [ABL-Src tyrosine kinase
inhibitor (TKI)], Tofacitinib (Tof) (JAK inhibitor), and BEZ-
235 (Bez) (PI3K/mTOR kinase inhibitor). For the majority of
the ALL samples, DRUG-NEM selects Das and Bez as the opti-
mal two-drug combination. This finding was confirmed by analyz-
ing the intracellular effects of the two-drug combinations under
CyTOF. This two-drug combination was also shown to be effec-
tive on 3 ALL-derived cell lines. Together, the HeLa analysis and
ALL analyses provide initial results to demonstrate how DRUG-
NEM leverages the richness of single-cell perturbation data to
account for ITH with the goal of prioritizing drug combinations.

Results
The DRUG-NEM Framework. DRUG-NEM is an optimization
framework designed to identify the minimal combination of
drugs that maximizes the desired intracellular perturbation
effects for an individual tumor based on single-cell analysis
before and after exposure to a panel of single drugs. Key features
of DRUG-NEM are illustrated in Fig. 2 for an individual sample
analyzed under no treatment (basal state) and following treat-
ment by one of three hypothetical drugs—S1, S2, and S3. Under
each condition, single-cell data are collected for six hypothetical
markers, M1–M6, measured per cell, where M1–M3 represent
the desired intracellular markers, M4 and M5 represent lineage
markers that are assumed to be unchanged following short-term
treatment response, and M6 is a death marker. For all drug com-
binations (namely, S1, S2, S3, S1 + S2, S1 + S3, S2 + S3, S1 +
S2 + S3), DRUG-NEM ranks the drug combinations in terms
of maximum desired effects with the minimum number of drugs
based on desired intracellular effects to the individual drugs.
DRUG-NEM is comprised of four key steps: (i) subpopulation
identification, (ii) estimation of desired effects, (iii) estimation of
drug NEM, and (iv) drug combination scoring and ranking based
on the drug NEM parameters.
Step 1: Subpopulation identification. DRUG-NEM accounts for
the possibility that the tumor is composed of subpopulations that
respond differently to drugs, making it necessary to first identify
the subpopulations. To facilitate this step, the selected markers
are ideally divided into two types: (i) lineage and (ii) intracel-
lular signaling markers. The lineage markers are used to iden-
tify the subpopulations, because they are assumed to remain
constant before and shortly after treatment. Changes in the intra-
cellular signaling markers are used to identify the perturbation
effects before and shortly after treatment within each distinct
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Fig. 2. Framework of DRUG-NEM algorithm. (A) MCM FCS files for each
treatment with measured expressions for lineage, intracellular, and death
markers. (B) Pooled data matrix from A with rows corresponding to cells
and columns representing lineage markers. (C) Output of CCAST applied
to pooled data using markers M4 and M5. (D) Decision tree from second
run of CCAST based on a significant death marker (M6) showing apoptotic
and nonapoptotic cells for each subpopulation. (E) Expression of cells from
each subpopulation showing the average intracellular signaling expression
measurements for each labeled marker Mi in each nonapoptotic subgroup
labeled here as green, red, and blue, respectively, under treatment condi-
tions including no drug (S0). The rows correspond to intracellular signaling
markers and the columns to treatments. The legend box corresponds to the
gradient from high (black) to low expression (white). (F) Matrix of probabil-
ity of intracellular signaling effect (Ei) associated with each marker across all
drugs. A dark box corresponds to an effect and a white box to no effect. An
effect is simply the change of state in terms of probability from the base-
line condition (S0) due the drugs S1–S3 in E. (G) Subpopulation-level sorted
desired effect matrix derived by weighting the intracellular signaling effects
in F using data-driven priors. (H) Drug nested effects network optimized

subpopulation. We illustrate the subpopulation identification
step in Fig. 2 on MCM data produced by CyTOF, even though
DRUG-NEM can be extended to other high-dimensional single-
cell datasets. MCM data are typically stored in a flow cytome-
try standard (FCS) file as a data frame with rows representing
the cells or events and the columns corresponding to the lin-
eage and intracellular signaling markers of interest as shown in
Fig. 2A. Each FCS file or data matrix would correspond to a
perturbation. The lineage markers (M4, M5) are preselected for
identifying the subpopulations. While the subpopulations can be
identified through manual gating using these markers, we recom-
mend a more automated process that starts by pooling all of the
single-cell data across all of the conditions including the control
(Basal) (Fig. 2B). Several unsupervised subpopulation identifi-
cation algorithms have been developed for such single-cell data
analysis (11–15). We apply Clustering, Classification and Sorting
Tree (CCAST) (15) to identify subpopulations of relatively homo-
geneous cells represented here as three subpopulations, color-
coded as green, red, and blue in Fig. 2C. In the case where lineage
markers are not available to define the subpopulations, intracellu-
lar markers may serve as surrogates, as we will demonstrate later.
In each subpopulation, using a single or set of death markers, we
apply an additional data filtering step to remove the cells that are
fully committed to apoptosis. We illustrate this step with a sin-
gle death marker (M6), used by CCAST to identify nonapoptotic
versus apoptotic cells from each subpopulation (Fig. 2D). We gate
out the apoptotic cells and then summarize the signaling expres-
sion measurements for each intracellular marker in each non-
apoptotic subgroup shown here as a 2D matrix, with rows corre-
sponding to the intracellular markers (M1–M3) and the columns
to the treatments including no treatment (S0) (Fig. 2E).
Step 2: Estimation of desired effects. Once we identify the tumor
subpopulations, the next step is to quantify the desired signaling
changes for the intracellular markers M1–M3 for each drug Sj

in each subpopulation. For each subpopulation, we estimate the
probability that a marker is differentially expressed with respect
to its baseline (no treatment) expression, under each drug (Fig.
2F) using Bayesian linear models (16) in the limma R package
(Materials and Methods). For simplicity, we create a probability-
of-effects matrix for each subpopulation, where white versus
black color-coding represents no effect versus effect, respec-
tively. The probability of an effect on marker Mi by drug Sj con-
ditioned on subpopulation k is represented by Eij |k . In practice,
prior knowledge that a desired phenotype such as cell death is
associated with up-regulation of death markers can be used to
weight intracellular effects. (Fig. 2G) (Materials and Methods).
The desired effects is best informed by prior knowledge depend-
ing on the drug mechanism of cancer. For example, one could
consider down-regulation of survival markers in targeted signal-
ing pathways, up-regulation of death markers, or a combination
of both. In SI Text, we describe how to estimate the desired
effects in the absence of prior knowledge.
Step 3: Estimation of drug NEM. We use this weighted prob-
ability-of-effects matrix for each subpopulation to build a drug
nested effects network (Fig. 2H) across all of the subpopulations.
Fig. 2H shows the drug effect profiles in Fig. 2G integrated across
all three subpopulations using a network representation where
the nodes are the drugs and a directed edge between two drugs
captures a subsetting of effects associated with each drug. For
example, the mapping is represented here as a directed graph
between S1, S2, and S3, with S3 downstream of both S1 and S2.
These relationships are represented with a directed edge from S1
to S3 and S2 to S3, respectively. In brief, drugs S1 and S2 effects
are a superset of S3 effects (E2, blue; E2, green). The network
captures not only the subsetting relationships of the drugs but

using the desired effects from G. (I) Rank of all drug combinations with the
best drug combination at the top using scoring distribution estimated from
the network in H (DrugNEM) compared with rankings from independent
drug effects (Independence).
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also the possible assignment of the effects to the drug network,
referred to later as a “position” or parameters of the network.
In practice, obtaining such a mapping with many more drugs and
intracellular signaling markers can be challenging. We adapt the
use of NEMs (17–21), a class of probabilistic models suitable for
reconstructing these kinds of hierarchical graphical models, from
high dimensional perturbation data.
Step 4: Drug combination scoring and ranking based on drug-
effects network. The objective of DRUG-NEM is to identify the
minimum number of drugs that will produce the most desired
intracellular effects across all subpopulations within a single
tumor. We score and rank all drug combinations under the
nested effects assumption, using the hierarchy and posterior
weights from the optimized drug NEM (Fig. 2H) to determine
the combination with the minimum number of drugs that max-
imizes the sum of the nested desired effects (Fig. 2I) (Materi-
als and Methods). For comparison purposes, motivated by the
traditional Bliss independence (4, 22) assumption for quantify-
ing the effects of drug combinations, we also score each drug
combination under additivity of independent drug effects using
the probability-of-effect matrix without knowledge of the struc-
ture of drug interactions from the drug NEM. The independent
effects scoring metric results in a closed form expression for
scoring each combination [Eq. S1 1. Optimizing Drug Combina-
tions Using Expected Additive Independent Effects (Independence
Scoring Metric)]. Fig. 2I provides a hypothetical exhaustive rank-
ing for all drug combinations assuming noisy effect data across
subpopulations under both approaches: independent and nested
effects. Note that although S1 + S2 and S1 + S2 + S3 affect
all markers in all subpopulations, S1 + S2 does so with only two
drugs and therefore is ranked higher under the nested effects
scoring metric (DrugNEM). Compared with scoring under the
nested effects metric, scoring under the independence metric
produces a less optimal solution, particularly on noisy data, as
demonstrated by the detailed sensitivity analysis on six network
models in 2. Robustness Analysis of DRUG-NEM on Simulated
Data and Figs. S1 and S2.

It is important to also recognize that optimizing the objective
function under independent effects assumptions would gener-
ally produce a continuous monotonic function with an expected
maximum (Fig. S3), which may not yield the optimal solu-
tion under certain drug network structures. In contrast, opti-
mizing the objective function under the nested effects assump-
tions would generally produce a monotonic step-wise function
(Fig. S4), whereby equivalent-scoring strategies (ties) can be fur-
ther assessed based upon other considerations. In the current
implementation of DRUG-NEM, the optimal nested solution
is the highest scoring combination with the minimum number
of drugs.

DRUG-NEM Selects TRAIL and MEK Inhibitor as an Optimal Combina-
tion on HeLa Cells. TRAIL, a death ligand member of the TNF
ligand superfamily (23), is a potent stimulator of apoptosis and
has been considered as a cancer therapy (24). However, poor
results from TRAIL alone are likely due to pathway-specific
resistance mechanisms to TRAIL (24, 25) and possibly ITH.
Ongoing interest in TRAIL is now more focused on its effect
within a drug combination strategy. To assess potential compan-
ion drugs to TRIAL, we consider critical intracellular signaling
markers associated with TRAIL in Fig. 3A and consider potential
inhibitors to these pathways. Using a CyTOF panel against the 24
TRAIL-specific intracellular markers in Fig. 3A, single-cell data
on HeLa cells were collected pretreatment and in response to
one of four treatments: TRIAL alone and one of the three small
molecular inhibitors—(i) MEK inhibitor (GSK), GSK1120212,
which is a potent and highly specific MEK1/2 inhibitor (26); (ii)
pP38MAPK inhibitor (SB), SB203580, which directly binds com-
petitively to the ATP site of the enzyme of p38 MAPK (27);
and (iii) PI3K inhibitor (GDC), GDC0941, which inhibits one
or more of the PI3K enzymes, part of the PI3K/AKT/mTOR
pathway.

A B

C

Fig. 3. Critical single-cell signaling markers associated with TRAIL path-
way in HeLa cells. (A) Potential nonapoptotic and apoptotic signaling mark-
ers affected by activation of TRAIL. (B) Apoptotic and nonapoptotic sub-
population identification of basal and treated cells using cleaved PARP
(cPARP) selected by CCAST from three death markers: cPARP, cCaspase3, and
cCaspase7. (C) 3D scatter plot of random nonapoptotic cells (i) representing
cPARP high- and low-cell condition on above three death effectors, (ii) show-
ing the subpopulation of cells color-coded as cell state 1 (POP1, red) and cell
state 2 (POP2, green), (iii) across all treatment conditions color-coded here
as blue (Basal), light blue (TRAIL), green MEK inhibitor (GSK), orange PI3K
inhibitor (GDC), and red pP38MAPK inhibitor (SB).

DRUG-NEM shows intracellular signaling response heterogeneity
in HeLa subpopulations. The DRUG-NEM analysis on single-
cell perturbation data of the HeLa cell line is summarized in
Figs. 3 B and C and 4. CCAST (15) selects cPARP to identify
and gate out the cells already committed to apoptosis, namely
those with high cPARP (Fig. 3B). Given the lack of lineage mark-
ers in this particular experiment, cPARP was manually selected
to identify high versus low cPARP-expressing subpopulations
among the nonapoptotic cells illustrated in Fig. 3 C, i. Fig. 3 C,
ii depicts the two subpopulations as POP1 (red: high cPARP)
and POP2 (green: low cPARP). These two subpopulations were
manually selected because they were readily observed in the
basal cells (pretreatment) and posttreatment under all four treat-
ment conditions. Fig. 3 C, iii shows the distribution of the cells
across all conditions color-coded here as blue (Basal), light blue
(TRAIL), green (GSK), orange (GDC), and red (SB). We can
regard these two subpopulations as “cell states” because it is
possible that some cells in the low-cPARP subpopulation may
move to the high-cPARP subpopulation posttreatment. Regard-
less, our analysis relies on the change in signaling of the remain-
ing intracellular markers, pre- and posttreatment, in these two
subpopulations.

Fig. 4A shows the heatmap of FCs of intracellular markers,
normalized with respect to the basal (no treatment) condition
in each subpopulation. In POP1, TRAIL and GSK each down-
regulate most of the intracellular signaling proteins, particu-
larly pERK and pS6 in the case of GSK. POP2, which corre-
sponds to the most surviving cells (low cPARP), shows more
up-regulation than down-regulation across all of the treatment
conditions, especially by SB on Bid and pERK.
DRUG-NEM ranks drug combinations by integrating nested drug
effects across subpopulations. We consider effects associated
with intracellular signaling markers that are down-regulated fol-
lowing treatment as desired intracellular effects. We choose the
down-regulated effects as opposed to weighting the effects by
the death marker cPARP, because cPARP was used to iden-
tify the subpopulations. Fig. 4B shows the heatmaps of these
down-regulated effects. The rows and columns of the probability-
of-effects matrix have been sorted to show the nested relation-
ships among drugs. This sorting is achieved using NEMs (17, 19,
28) (Materials and Methods). In POP1, TRAIL down-regulated
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Fig. 4. DRUG-NEM analysis on HeLa cells. (A) Heatmaps of normalized fold
change (FC) of intracellular markers with respect to the baseline across all
treatments for two survival subpopulations (POP1–POP2). (B) Heatmaps of
probability of effects associated with down-regulation of all intracellular
signaling markers. Rows and columns of the effect matrix for each sub-
population have been sorted to show the nested effects across drugs. (C)
Drug NEM for each subpopulation. (D) Integrated drug nested effects net-
work (Top) with heatmap (Bottom) of integrated desired effect data across
all subpopulations of cells portraying the effects of GDC (pink line) and SB
(green line) are a subset of the effects of TRAIL (blue line) and GSK (brown
line). Node sizes depict the conditional number of desired effects connected
to the associated node. (E) Drug nested effects network with TRAIL on top
under a nonheterogeneous model using average desired effects derived
from pooling all of the cells in Fig. 3 C, iii. The GSK effects from D not associ-
ated with TRAIL have been lost. (F) DRUG-NEM ranking for top-scoring drug
combinations with TRAIL. (G) Survival in vitro analysis for several drug com-
binations involving TRAIL plus GSK, GDC, and SB using clonogenic assays
showing that any drug combination including TRAIL and the GSK results
in higher cell death levels compared with combinations without these two
treatments.

effects form a superset of GSK, GDC, and SB effects while GSK
effects form a superset of the GDC effects. Within the NEM
framework, this directed transitively closed network in Fig. 4
C, i infers that within POP1, TRAIL will likely have the great-
est response because it down-regulates the greatest number of
intracellular markers. In POP2, TRIAL has disjoint effects
between GSK and GDC, with GSK effects forming a superset
of GDC effects. Although we infer different nested drug effects
networks for the two subpopulations, we want to optimize drug
combinations across all cells since all of the cells will be treated

simultaneously. Integrating the effects across the two subpopula-
tions results in the sorted probability-of-effects matrix shown in
Fig. 4D with the drug NEM shown on the top. Note the size of
the nodes reflects the underlying number of effects attached to
the node. Interestingly, this integrated network differs from net-
works derived from the individual subpopulations shown in Fig.
4C; it also differs from the predicted network that ignores ITH
(Fig. 4E), where the effects are derived from averaging across all
of the cells. The integrated nested drug effects network in Fig.
4D and associated drug combination ranking for the top regi-
mens shown in Fig. 4F identifies TRAIL and GSK as the highest
scoring two-drug combination.
Validation of DRUG-NEM drug combination ranking on HeLa cells
based on viability analysis. To validate the DRUG-NEM find-
ing, an independent in vitro survival analysis was performed on
HeLa cells under several drug combinations involving combina-
tions of TRAIL plus either GSK, GDC, and SB using clonogenic
assays in triplicate (Materials and Methods and Dataset S1). The
percentage of surviving cells in Fig. 4G was calibrated relative
to TRAIL to depict the additional fractional killing of cells due
to the drugs in combination with TRAIL versus TRAIL alone.
The top three most effective regimes (TRAIL + GSK, TRAIL +
GSK + GDC, TRAIL + GSK + SB) were consistent with the
top three DRUG-NEM rankings (Fig. 4F). These results provide
empirical evidence that any strategy that combines TRAIL with
the GSK (MEK inhibitor) is most effective compared with those
without. DRUG-NEM chooses TRAIL + GSK among these tied
strategies because it consists of the least number of drugs.
TRAIL + GSK killed 60% more cells compared with TRIAL
alone. Interestingly, adding GDC to TRAIL + GSK produced
similar results to TRAIL + GSK.

DRUG-NEM Identifies PI3k/mTOR and ABL/Src Inhibitors as a Predomi-
nant Optimal Combination in ALL Patient Samples. ALL is the most
common cancer diagnosed in children and represents ∼25% of
cancer diagnoses among children younger than 15 y (29). Despite
dramatic improvements in clinical outcome for pediatric ALL
over the last 40 y, relapse remains the most significant cause
of mortality in 20% of patients (30, 31). Combination of tar-
geted drugs and chemotherapy are being suggested as poten-
tial therapeutic solutions to improve these outcomes (32). Using
DRUG-NEM, we demonstrate a potential role for single-cell
drug screening analysis to help guide rational choice of combi-
nation therapy for the individual ALL patient.

We apply DRUG-NEM on a CyTOF-based drug screen-
ing dataset generated from 30 B-cell progenitor ALL pediatric
patient samples denoted here as UPN1–UPN30. Each sample
was analyzed using a CyTOF panel of 21 B-cell lineage mark-
ers and 16 intracellular protein expression responses, summa-
rized in Fig. 5A. CyTOF analysis was performed before and after
30 min of single drug treatment at optimal doses for three drugs:
Das (BCR-ABL inhibitor), Tof (JAK/STAT inhibitor), and Bez
(PI3K/mTOR inhibitor) (Materials and Methods).
DRUG-NEM identified intratumoral signaling-response hetero-
geneity in the ALL samples. The DRUG-NEM ALL results for
2 of the 30 patient samples (UPN1 and UPN7) are summarized
in Fig. 5 B–D. The samples were manually gated to capture live
malignant cells. The top row of Fig. 5B shows the 3D scatter-
plot of the two patient samples, based on three manually selected
markers (which differs for UPN1 and UPN7) and color-coded by
cPARP expression. Note that even after manual gating to remove
the apoptotic cells, there is still evidence of cPARP heterogene-
ity in each sample. The bottom row of Fig. 5B shows the cells are
randomly distributed across all treatment conditions color-coded
here as blue (Basal), black (Bez), orange (Das), and green (Tof)
for UPN1 and UPN7, respectively.

To account for intratumor heterogeneity, we initiated DRUG-
NEM with a minimum of five subpopulations based on ex-
ploratory clustering with SPADE (13) (Fig. S5) and then applied
CCAST to identify and match seven cell subpopulations across
the three inhibitors and basal (pretreatment) conditions for each
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Fig. 5. DRUG-NEM analysis on two ALL patient samples. (A) Table showing
all lineage and nonlineage markers used in the study. (B, Top) 3D scatterplot
of pooled UPN1 and UPN7 manually gated cells corresponding to malignant
cells derived from gating out potential T and myeloid cells respectively color
coded by the cPARP expression. (Bottom) Corresponding distribution of the
cells in the top row across all treatment conditions color coded here as blue
(Basal), black (BEZ), orange (Das), and green (Tof) showing a random distri-
bution. (C) Heatmaps corresponding to lowly expressed cPARP cells from all
seven subpopulations derived using CCAST showing normalized FCs before
(Basal) and after treatment. Notice the strong down-regulation effect of
4EBP1 by BEZ across major subgroups. (D) Bar plot showing the distribu-
tion of best DRUG-NEM (down FC) predictions for 30 random samples from
patients UPN1 (i) and UPN7 (iii), respectively, with the mode on BEZ + Das.
The associated dominant DRUG-NEM networks (ii and iv) for both patients
are different, and most target effects are associated with BEZ (UPN1) and
Das (UPN7), respectively.

patient sample (Fig. 5C). The CCAST-derived decision trees
that define the subpopulations for UPN1 and UPN7 are shown
in Fig. S6. The similar percentages of cells for subpopulations
across all conditions (basal and treatment following the three
inhibitors) provide evidence of stability in the subpopulation dis-
tributions (Fig. S7A). Note that the larger sized subpopulations
predominately show down-regulation of p4EBP1 by Bez in both
samples (Fig. 5C). This phosphorylated oncogenic protein oper-
ates downstream of the PI3K/AKT/mTOR kinase signaling path-
way, and its down-regulation signifies the inhibition of this par-
ticular pathway by Bez. Interestingly, a greater number of diverse
effects to all three inhibitors are found in the smaller sized
subpopulations.

For both UPN1 and UPN7, DRUG-NEM predicted the best
drug combination as BEZ + Das, where the desired effects were
based on a decrease in FC, denoted as Down FC (Fig. 5 D, i and
iii, respectively). For both patients, BEZ + Das was the most fre-
quent top ranking strategy based on 30 different DRUG-NEM
runs, where each run consisted of about 10,000 cells that were
density-dependent down-sampled from the original data (13).
Note the most frequent drug NEM differed for both patients
(Fig. 5 D, ii and iv, respectively), yet after scoring, the BEZ +
Das combination was the highest ranking treatment strategy for
both patients.
Validation of DRUG-NEM by showing consistency between pre-
dicted and observed drug-combination ranking on two ALL pa-
tient samples, UPN1 and UPN7. To validate the combination of
BEZ + Das for UPN1 and UPN7, all two-drug combinations
were analyzed together with the single drugs by CyTOF using the
same panel (Fig. 5A). The actual top-ranked treatment strategy
based on the maximal sum of desired effects following all drug
combination responses was compared with the top-ranked pre-
diction from DRUG-NEM, which was derived from the single-
drug responses alone. The DRUG-NEM analysis was performed
using the same sampling scheme as before with 30 runs. For each
run, the number of mismatches between the actual versus pre-
dicted top scoring treatment strategy was compared under the
DrugNEM versus the Independence scoring metrics, assuming
down-regulated desired effects. Out of the 30 runs, the number
of mismatches using the DrugNEM versus Independence metric
was 1 versus 21 for UPN1 and 5 versus 9 for UPN 7 (Fig. S7 B, i
and ii, first row, labeled “Down FC”), demonstrating DrugNEM
produced the least mismatches for both patients.
Extensions of DRUG-NEM illustrated on ALL patient samples,
UPN1 and UPN7. We consider three extensions of DRUG-NEM.
First, we address the possibility that the user does have prior
knowledge on the desired effects. In the examples above, we
assumed the desired effect was down-regulation of the intracellu-
lar markers, referred to as Down FC. Here we consider two more
potential desired effects: (i) the intracellular signaling effects
estimated from the odds of increasing down-regulation derived
from a weighted T-statistic (Down T-stat) and (ii) the intracellu-
lar effects associated with up-regulation of death markers (e.g.,
cPARP) (Up Death Marker). In 3. Sensitivity Analysis of DRUG-
NEM on Prior Knowledge of Desired Intracellular Effects on Two
ALL Patient Samples, UPN1 and UPN7 and Fig. S7B, we report
the number of mismatches under these different desired effects
and show that in each case DrugNEM outperformed Indepen-
dence scoring. In addition, we show DRUG-NEM performs bet-
ter using one of these priors compared with considering any
effect (i.e., no prior) (Fig. S7C). In the absence of an appropri-
ate prior for the desired effects, we propose the use of the odds
ratios to compare the maximum DRUG-NEM scores under dif-
ferent assumptions of desired effects, described in 4. Generaliz-
ing DRUG-NEM to Estimate the Most Likely Desired Effects With-
out Prior Knowledge, 5. Illustrating the Selection of Desired Effects
in Absence of Prior Knowledge, and Fig. S8. Next, we show that
DRUG-NEM results are robust to slight variations in the lineage
marker distribution due to drug perturbation by bootstrapping
the underlying subpopulations (3. Sensitivity Analysis of DRUG-
NEM on the Characterization of Subpopulations on ALL Patient
Samples and Fig. S7 D and E). Finally, we show that DRUG-
NEM can be extended to optimize different responses in differ-
ent cell types, opening the possibility for optimizing drug com-
binations based on desired intracellular responses in malignant
cells and possibly a different set of desired effects in nonmalig-
nant cells (7. DRUG-NEM Jointly Applied to Malignant and Non-
malignant Subpopulations and Fig. S9).
Application of DRUG-NEM on 30 ALL patient samples. When we
applied DRUG-NEM to 30 ALL patient samples, we accounted
for additional variability by applying DRUG-NEM after three
different gating strategies: (i) “All,” denoting the entire sample
including live and death cells; (ii) “Live only,” denoting the man-
ually gated live cells; and (iii) “Malignant cells,” denoting the
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Fig. 6. DRUG-NEM analysis on 30 ALL patient samples and viability analysis
of ALL cell lines. (A) Cross-classification table showing the DRUG-NEM study
design for each ALL sample between three different gated cells and three
different desired effects. Each DRUG-NEM analysis was repeated twice on
down-sampled data of about 10,000 cells per FCS file to account for sam-
ple variation. (B) Bar plot showing the distribution of top DRUG-NEM pre-
dictions for all 30 patients with BEZ + Das having a 39% chance of being
selected as the best drug combination. (C) Distribution plot showing the
patient-specific optimal drug combination predictions by DRUG-NEM. The
single dominant two-drug strategy (BEZ + Das) for 60% of patients may not
be optimal for all patients. (D) Line survival plots showing the average time
varying percentages of live cells. (E) Bar plot illustration of drug effective-
ness in terms of bliss independence for all three cell lines showing a poten-
tial BEZ + Das synergistic effect in terms of combination index (CI) with the
strongest effect occurring in the NAM1 cell line (CI = 0.86). The dotted red
line shows the theoretical expected additive effect for BEZ + Das.

process of manually gating to enrich for malignant white blood
cells (blasts), devoid for normal cells, such as T and myeloid cells.
The gating strategies are summarized in Fig. 6A. We consid-
ered all three desired priors described above (Down FC, Down
T-stat, and Up Death Marker). We repeated the down-sampling
twice. In total, for each patient sample, we have 18 different con-
ditions (3 Gating Strategies × 3 Desired Effects Prior × 2 Down-
Sampling Replicates). Adding to these analyses, the results from
no prior weighting yielded a total of 36 runs per patient.

To determine if the BEZ + Das prediction by DRUG-NEM
for UPN1 and UPN7 above can be generalized, we analyze

the top ranking predicted strategy across all 30 patients. We
summarize the top predictions across the 30 patients in a bar
plot shown in Fig. 6B showing the distribution of results from
a total of 1,080 DRUG-NEM analyses (30 patients × 36 con-
ditions per patient). Interestingly, although BEZ + Das had a
39% chance of being selected as the best drug combination, in
roughly 45% of the runs, BEZ alone or Das alone was top rank-
ing. Fig. S10A summarizes distribution of the DRUG-NEM net-
work models across all 1,080 analyses. Fig. 6C shows the DRUG-
NEM patient-specific predictions indicating that except for two
patients (UPN3 and UPN21), a strategy including BEZ alone,
Das alone, or BEZ + Das is optimal for 93% of the patients, with
BEZ + Das as top ranking in 60% of the patients (Fig. S10B). In
summary, this analysis suggests while there may be a single dom-
inant two-drug strategy (BEZ + Das) for the vast majority of
ALL patients, that strategy may not be optimal for all patients.
Viability analysis of BEZ alone, DAS alone, and the BEZ–Das combi-
nation on three ALL cell lines. Because BEZ + Das was selected
as the optimal two-drug combination across the vast majority of
the ALL patient samples, we tested the effect of BEZ + Das
by performing two independent viability assays on three inde-
pendent ALL-related cell lines, treating the cells with both the
single inhibitors and combination of BEZ + Das and observing
the cell growth over a period of at least 72 h (see Dataset S1).
The three cell lines tested were (i) the NALM6 cell line, which is
a precursor (pre)-B human cell line derived from an adult ALL
relapsed patient (33); (ii) the NALM1 cell line, a non-T, non-B
human leukemia cell line (NALM-1) (34); and (iii) the SUP-B15
cell line, derived from a Ph + ALL child (35). Fig. S10C shows
the stacked bar plots corresponding to the relative frequency of
cells that were alive, dead, or committed to early apoptosis after
treating the cell lines for 3 d using viability assays. The biggest
decrease in cell viability can be observed over time for all cell
lines using both drugs compared with the single-drug conditions
with almost all of the cells killed in the SUP-B15 cell line after
72 h (Fig. 6D). The survival curves are derived from average sur-
vival values of each cell line treatment condition at optimal doses
(Materials and Methods). BEZ + Das consistently achieved the
most cell kills after 72 h compared with the single drugs. With
the effect measured as cell death, we use the CI [1. Optimizing
Drug Combinations Using Expected Additive Independent Effects
(Independence Scoring Metric)] to investigate the presence of a
synergistic effect (CI < 1), additive effect (CI = 1), or antagonist
effect (CI > 1) for the BEZ + Das effect. Under Bliss indepen-
dence, Fig. 6E illustrates and quantifies the drug effectiveness
of BEZ + Das across all three cell lines. The synergistic effect
is strongest in the NALM1 cell line, with a CI value of 0.86. In
summary, the ALL analysis shows that analyzing intratumor het-
erogeneity in terms of single-cell signaling responses may prove
to be an additional tool for guiding combination treatment deci-
sions for the individual patient.

Discussion
Single-cell technologies enable the possibility for personalized
combination cancer therapies that account for ITH. We intro-
duced an algorithm, DRUG-NEM, that identifies top ranking
drug combinations based on a short-term single-cell perturbation
response when an individual tumor sample is screened against
a panel of single drugs. We demonstrate DRUG-NEM using a
single-cell technology, CyTOF, to determine effects of drugs on
intracellular markers. The major assumption underlying DRUG-
NEM is that changes in intracellular signaling markers serve as
a surrogate for drug effectiveness. It is worth noting that while
short-term intracellular signaling changes are not guaranteed
evidence of long-term cell fate such as cell death, several stud-
ies (8–10) including our analysis (Fig. S8 A and B) show such
an association can exist. Continued work in this area is fueled
by the limited ability to establish a long-term drug response on
primary samples. Given that the identification of such intracel-
lular biomarkers is an active area of research, DRUG-NEM
leverages these short-term surrogate endpoints to single drugs to
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identify drug combinations that account for intratumoral signal-
ing heterogeneity.

DRUG-NEM is composed of four steps: (i) identify the sub-
populations that make up the tumor and may respond differently
to treatment, (ii) estimate the effects associated with a desired
response, (iii) reconstruct a drug NEM that integrates the drug
effects across all subpopulations to capture subsetting relation-
ships among individual drug effects, and (iv) using the drug
NEM, score the drug combinations by prioritizing the minimum
number of drugs that in combination have the greatest number of
desired intracellular effects. In a simulation analysis, we showed
that drug combinations scored by assuming drug nested effects
outperformed those based on the additivity assumption of inde-
pendent drug effects, particularly when the effects of the drugs
are not disjointed.

DRUG-NEM analysis on HeLa cells predicted TRAIL and
MEK inhibitor as the optimal combination after analyzing the
CyTOF-based single-cell intracellular perturbations with TRAIL
and three different inhibitors. This result was validated based on
viability studies of all drug combinations together with TRAIL.
Admittedly, this result is influenced by the selected markers used
to infer the response. The markers in the HeLa analysis were
based on expert knowledge of pathways implicated in TRAIL’s
mechanism of action and resistance. The HeLa analysis also
highlights the performance of DRUG-NEM when intracellular
markers are used to identify the subpopulations. While DRUG-
NEM was conceptualized assuming lineage markers would be
available to identify the subpopulations, lineage markers may not
be available (or known) that can best define the subpopulations.
While an extensive analysis on the use of intracellular markers
for identifying the subpopulations is warranted, we showed that
the use of intracellular markers for identifying the subpopula-
tions on the HeLa cells produced a more accurate prediction of
the drug combinations than assuming the cell line lacked intra-
tumoral signaling heterogeneity.

The application of DRUG-NEM on 30 ALL patient drug–
response CyTOF single-cell data found ABL/Src and PI3k/mTOR
inhibitors as the best combination therapy for 60% of the
patients. The use of the mTOR inhibitor is consistent with the
finding that targeting mTOR is a promising strategy for cancer
therapy by strongly suppressing 4EBP1 phosphorylation. Such an
inhibitor has been shown to be a potent cytotoxic agent against
leukemia cells and enhance the efficacy of the TKIs such as Ima-
tinib and Das in Ph + acute leukemia models (36). In addi-
tion, the combination of ABL/Src inhibitor and PI3k/mTOR
inhibitor was validated using viability assays on three ALL
cell lines.

In the ALL analysis, we explored the properties of DRUG-
NEM with an extensive sensitivity analysis, assessing the robust-
ness of several aspects of the algorithm, including gating, weight-
ing, and down-sampling. DRUG-NEM was robust in this context
within reasonable variations related to gating and down-sam-
pling. We demonstrated that the DRUG-NEM results are robust
to slight variations in the lineage marker distribution used to
determine pre- and posttreatment subpopulations. For this anal-
ysis, we assumed the desired effects were down-regulation of
intracellular markers because many of these markers were asso-
ciated with signaling drug targets. When we assumed that the
desired effects were associated with up-regulation of death mark-
ers, the most optimal drug strategy was unchanged. In the
absence of any prior knowledge for choosing the desired effects,
we explored the use of DRUG-NEM to inform the best choice
of desired effects. We proposed choosing the desired effects that
maximize the DRUG-NEM score based on odds ratios for alter-
native desired effects assumptions.

To date, accounting for single-cell signaling heterogeneity in
drug response for an individual tumor in a high-throughput man-
ner is a relatively unexplored area. DRUG-NEM provides a for-
malism that addresses this area. Because DRUG-NEM leverages
single-cell data, DRUG-NEM can be extended to optimize dif-
ferent responses in different cell types, opening the possibility

for optimizing drug combinations based on desired intracellu-
lar responses in malignant cells and a different set of desired
effects among the nonmalignant cells (Fig. S9). Moreover, the
intracellular signaling panel can be extended to quantify poten-
tial unwanted off-target effects, which can also be incorporated
in the effects matrix and weighted as undesired effects, enabling
simultaneous optimization for reduced toxicity effects.

DRUG-NEM provides a broad analytical framework that can
be expanded. First, DRUG-NEM can be applied to a larger num-
ber of drugs. We demonstrated DRUG-NEM on a small num-
ber of drugs (four drugs on the HeLa cell line and three drugs
on 30 ALL samples) as a proof of concept. As the number of
drugs increases (>5), more efficient search and ranking algo-
rithms will need to be implemented (8. DRUG-NEM on Large
Networks). Given the large number of potential combinations
when choosing from a large number of drugs, DRUG-NEM’s
ranked combinations may be used to prioritize drug combina-
tions for further testing. Second, DRUG-NEM can be adapted
to different logical rules. The current scoring implementation
of DRUG-NEM assumes an OR relationship between drugs in
alternative paths to integrate drug combination effects. Adapta-
tion of the Boolean NEM (37) within the framework of DRUG-
NEM, which requires drug combination data to incorporate logic
combinations of desired effects when integrating other molecu-
lar data types, may be used to score Boolean drug combinations
as well as refine the drug combination ranking distribution. Fur-
thermore, it is possible on a longer time scale that one or more
drugs may induce new subpopulations that were not present in
the baseline condition. Such a scenario will require an adap-
tive strategy, which includes updating the subpopulation iden-
tification step, potentially requiring modeling of dynamic nested
effects (19).

In summary, DRUG-NEM is a framework using single-cell
technologies that measure intracellular perturbations to opti-
mize drug combination strategies while accounting for ITH. It
can be adapted to incorporate complementary molecular data to
ultimately achieve more effective therapy for individual cancer
patients.

Materials and Methods
Deidentified pediatric ALL bone marrow specimens were obtained under
informed consent from Pediatric Clinic University of Milan Bicocca (Monza,
Italy) for 30 primary diagnostic patient samples. Use of these samples was
approved by the institutional review board in both Italy and Stanford. All
relevant ethical regulations were followed in this study. MCM measurement
and data preprocessing was performed using mass-tag cellular barcoding
(MCB) as described previously by Bodenmiller et al. (7). We assume that the
data have already been preprocessed using standard analytic steps for MCM
data to remove spurious events and then transformed using Arcsinh func-
tion with cofactor 1 (11).

HeLa Clonogenic Assay Analysis. HeLa cells were plated at a density of 2,000
cells per well in triplicates in the presence or absence of Mek (20 µM), pP38
MAPK (20 µM), and PI3K (2.5 µM) inhibitors for 1 h, followed by treatment
with TRAIL (20 µM) for 24 h. After TRAIL treatment, drug-treated media
was replaced with fresh growth media (DMEM) and cells were allowed to
grow for about a week before colony counting. Note that the same concen-
trations were used for the CyTOF data analysis.

ALL Cell Line Survival Assay Analysis. ALL cell lines were grown in suspension
in RPMI medium supplemented with 10% serum for a period of at least 72 h
in the presence or absence of Bez (1 uM) and Das (100 nM) individually and
in combination. Trypan Blue, Ann V FITC, and 7AAD stainings were used to
obtain live, dead, and early apoptotic cell numbers and percentage viability.
The above concentrations were used for performing the single- and double-
drug CyTOF data analysis including 100 nM of Tof that was not used in the
survival assays.

Availability of Supporting Datasets and Algorithms. All supplementary data
(S3–S9) can be downloaded from ccsb.stanford.edu/research/core.html.

DRUG-NEM Algorithm. In the following sections, we provide a detailed
description of DRUG-NEM as a four-step algorithm: (i) population

Anchang et al. PNAS | vol. 115 | no. 18 | E4301

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711365115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711365115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711365115/-/DCSupplemental
http://ccsb.stanford.edu/research/core.html


www.manaraa.com

identification, (ii) estimation of desired effects, (iii) nested effect modeling,
and (iv) score-rank analysis to prioritize combination therapy.
Step 1: DRUG-NEM uses a decision tree to automatically gate out apoptotic
cells in each subpopulation and averages out the expression of each signal-
ing protein across the remaining cells. For each subpopulation, DRUG-NEM
gates out the cells in which apoptosis has been initiated using a prespecified
death marker or by selecting the most statistical significant death marker
among others using the CCAST algorithm by Anchang et al. (15). This step
filters out apoptotic cells and leaves nonapoptotic cells whose signaling is
taken to be informative of a preapoptotic response. We denote the signal-
ing expression measurements for each marker Mi from drug Sj condition on
subpopulation k as Mij|k. Note that all of the cells for each marker in each
subpopulation will form replicate data under each treatment. This allows
for averaging the signaling marker expressions from each subpopulation
and statistically testing for differential treatment effects for each marker
using linear models.
Step 2: DRUG-NEM uses “limma” to estimate the probability of drug
intracellular signaling effects for each subpopulation. DRUG-NEM uses the
probability (or log-odds) of each measured intracellular signaling marker
being differentially expressed after drug treatment in each subpopulation
k. These probabilities can be easily estimated using linear models (16). More
specifically for each subpopulation, the limma package in Bioconductor uses
Empirical Bayes estimates (B-statistic) derived from a moderated T-statistic
for a particular marker Mi with the variance component estimated across all
of the markers. DRUG-NEM uses the B-statistic (B) output from limma, which
is the log odds that the marker is differentially expressed (16) to derive the
probability Eij|k of a marker Mi being differentially expressed under drug Sj

condition on subpopulation k. Assuming Bij|k and Eij|k correspond to the log
odds and probability estimates, respectively, for marker Mi to be differen-
tially expressed after drug treatment Sj in subpopulation k,

log

(
Eij|k

1− Eij|k

)
= Bij|k. [1]

This implies Eij|k =
exp(Bij|k )

1+exp(Bij|k ) . Without prior knowledge, by defining our

estimated intracellular signaling effect probabilities for each subpopulation
as our desired effect, we create an input for the nested effect modeling part
of the DRUG-NEM algorithm as a 2D effect data matrix, denoted as E with
the intracellular signaling markers assigned to the rows and the drug labels
assigned as columns. DRUG-NEM can also incorporate prior related informa-
tion by weighting each intracellular signaling effect Eij|k to generate a new
effect data matrix representing the desired effect matrix required for drug
combination scoring.
Estimating desired effects using down-regulated intracellular signaling
effects. Assuming wij|k represents the weight for down-regulation associ-
ated with intracellular signaling marker Mi under drug Sj in subpopulation k
and can take only values 0 or 1, then without changing the notation for our
desired effect matrix (E), Eij|k = wij|kEij|k and a drug NEM can be applied on
this weighted 2D matrix, E. Also, the log (odds) measure from Eq. 1 is related
to a moderated T-statistic (16). Assuming the odds of a desired effect is asso-
ciated with negative T-statistic, we can equally generate discrete desired
probabilities for each marker Mi by setting wij|k = 1 if Tij|k < 0 and 0 oth-
erwise, where Tij|k represents the corresponding T-statistic associated with
marker Mi to be differentially expressed after drug treatment Sj in subpop-

ulation k. In a parametric setting, we can also approximate log(
Eij|k

1−Eij|k
) as

−Tij|k to derive desired effects associated with the odds of down-regulation.
We denote both processes as Down FC and Down T-stat, respectively.
Estimating desired probability effects using up-regulation of death mark-
ers (Up Death Marker). Biologically, eventual cell death is expected to be
associated with cells whose intracellular signaling effect correlates with an
increase in expression of death markers. In practice, since our model requires
effect probabilities, we again use the moderated T-statistic, which is also
related to B for a given death marker Mi denoted here as Ti . Assuming up-
regulation (positive T-statistic) of the death marker is associated with the
odds of cell death compared with a negative score, a logistic function on Ti

is used to generate the effect probabilities. Also, B is derived from a logistic
function representing the probability of intracellular signaling effect. Under
independence assumptions, we consider the bivariate effects (B, Ti) as a ran-
dom variable derived from a bivariate distribution with independent logistic
marginals given by

F(b, ti) =
1

1 + e−b + e−ti + e−(b+ti )
for−∞< (b, ti)<+∞. [2]

The joint probability is then used as input for drug nested effects modeling
and drug combination scoring. Under such a scenario, Eij|k = Fij|k.
Step 3: DRUG-NEM uses NEMs to generate a graphical model of drugs rep-
resenting the relationships between drugs and markers across subpopu-
lations. DRUG-NEM builds on the NEMs. We briefly introduced the notion
of NEMs in Results. The NEM methodology is implemented in the biocon-
ductor r package nem and cran packages nessy or ddepn (18). NEMs were
first proposed for the analysis of nontranscriptional signaling networks (21).
Following refs. 17, 21, the perturbed players in the signaling pathway are
called S-genes, and the players that show expression changes in response to
perturbation are called E-genes. In summary, an NEM is a directed and pos-
sibly cyclic network that connects the S-genes with the edges representing
subset relationships.

Within the context of DRUG-NEM, we define S-genes as drug interven-
tions and E-genes as targeted intracellular signaling markers. If we denote
the single-drug interventions by S = S1, ..., Sn, a directed edge from S1 to S2

indicates that intracellur signaling markers affected by the drug S2 are also
affected by drug S1. This defines a subset relationship on pairs of drugs, and
thus, transitive relationships are expected for more than two drugs mathe-
matically represented as a transitively closed graph or adjacency matrix that
defines a partial order on the drugs S (38). Assuming that the effect data E
is a 2D data matrix with number of rows of E representing m independent
effect vectors associated with m markers, closely following the formulism
of NEM in ref. 21, a NEM model consists of the transitively closed graph Φ

and the parameters for the allocation of specific desired effects to drugs
denoted as E-marker positions Θ. Fig. S1 gives complete model parameter-
ization for four drugs with all E marker effect positions for six different
NEM models. Specifically, Θ = {θi}m

i=1 with θi ∈{1, ..., n} and θi = j if Mi is
attached to Sj . NEM was extended in refs. 19 and 39 by including an addi-
tional node denoted by ⊕, which is not connected to any of the drug inter-
vention schemes. E-markers can be linked to this node, if their effect pattern
does not match any of the θi in φ. Markers linked to the ⊕ node are usually
excluded from the model.
Estimating model parameters of the DRUG-NEM model conditioned on the
effect data. Here we provide a brief overview of how the likelihood of the
model is calculated and maximized given the estimated effect data matrix E.
A given network Φ is usually scored by estimating the posterior probability
given the data E, P(Φ|E). According to Bayes’ rule, the posterior probability
can be written as

P(Φ|E) =
P(E|Φ)P(Φ)

P(E)
, [3]

where P(E) is a normalization constant that does not depend on Φ. Con-
sequently, the marginal likelihood P(E|Φ) together with the network prior
P(Φ) play the central role in the inference. An exhaustive search on all net-
work structures only depends on scoring each network by the marginal
likelihood. Assuming we have the effect data E, the marginal likelihood
involves marginalization over the whole parameter space Θ.

P(Φ|E) =

∫
Θ

P(E|Φ, Θ)P(Θ, Φ)dΘ =
1

nm

m∏
i=1

n∑
j=1

P(Ei|Φ, θi = j). [4]

The marginal likelihood P(E|Φ, Θ) is based on the assumption of conditional
independence of effects given the network Φ and the fact that each effect
associated with each marker is linked to exactly one node in the network.
Our goal is to find the maximum a posterior (MAP) estimate for P(Φ, Θ|E)
given by

(Φ̂, Θ̂) = arg max
Φ,Θ

P(Φ, Θ|E). [5]

In an exhaustive setting, once we maximize the graph Φ, we can also max-
imize the E-marker positions Θ. Given a network model Φ, the posterior
probability for an edge between drug Sj and an E-marker Mi is derived (21).
Alternatively, Θ and Φ can be maximized together (39), or their optimal
parameters can be estimated by a Bayesian MAP approach (40). In most
cases, Θ is treated as nuisance parameters that are integrated out (17, 19,
21, 28) to make predictions on the perturbation space. The ultimate goal of
the study is to optimize drug combinations by using the drug nested desired
effects. Scoring of drug combinations requires parameter estimates from the
maximized drug network model (Φ̂, Θ̂).
Step 4: Scoring functions for ranking drug combinations. We present two
approaches to score and prioritize drug combinations given the drug effect
data E. The first approach based on additivity of independence effects is
illustrated in SI Text, and the following method is based on NEM’s network
parameters.

E4302 | www.pnas.org/cgi/doi/10.1073/pnas.1711365115 Anchang et al.
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DRUG-NEM uses the maximum conditional posterior probabilities to
score and rank drug combinations (DrugNEM metric). For scoring a single-
drug combination, we use the maximum of the posterior weights, E∗ic =

max(P(θi=j|Φ̂c, E, j∈ c)) as an estimate of desired effects from a given drug
NEM Φ̂ associated with each intracellular signaling marker Mi under each
drug combination indexed by c, where c∈℘(S = 1, ..., n)/∅ corresponds to
an element of the power set of all combinations generated from the index
set {1, . . . , n} for drugs S1, ..., Sn with r corresponding to the rth element in
c and |c| the cardinality of c. We sum over all posterior probabilities asso-
ciated with union of markers in the combination to determine the score
for a given combination denoted as F(c). For a given nested effects net-
work Φ̂, if we denote the set of markers associated with drug Sj as Aj ,
the union set of markers for a given drug combination indexed by c with
r corresponding to the rth element in c is determined using sequences of
index families of sets. For example, given a combination indexed by c = 1, 2,
where Φ̂c forms a subgraph of Φ̂ with Φ̂{1}⊆ Φ̂{1,2} and {A{1}}⊆{A{1,2}},
the smallest set containing each element of Ar corresponds to the supre-
mum of a sequence of index sets given by sup{Ac}c = A{1} ∪A{1,2} =

A{1,2}.F({1, 2}) =
∑

i∈sup{A{1,2}}{1,2}
E∗i{1,2}, which corresponds to the sum

of the union of all desired effects associated with all markers attached
to Φ̂{1,2}.

For ranking a set of drug combinations, for a given set of drugs S1, . . . , Sn,
indexed as {1, . . . , n}, the total number of drug combinations corresponds

to the cardinality of ℘(S = 1, . . . , n)/∅ given by |℘(S = 1, . . . , n)| /∅= 2n− 1.
For simplicity we denote this as |℘(S)|. If we let X1, X2, . . . , X|℘(S)| be the
scores for each drug combination estimated by F(c); a nondecreasing rank-
ing of the scoring distribution for these drug combinations is given by
X(1)≤X(2)≤ . . .≤X(|℘(S)|),where X(r) is the rth smallest value in the distri-
bution for r = 1, 2, . . . , |℘(S)| and the optimal drug combination is given by
arg(X(|℘(S)|)), corresponding to the combination with the maximum order
score. For DRUG-NEM, X(1)≤X(2)≤ . . .≤X(|℘(S)|) under certain graph struc-
tures is expected to produce ties even under noisy data (e.g., Fig. S1F).
Under this particular model, the nested structure breaks the tie, forcing
arg(X(|℘(S)|)) in this case to S1. In practice, we identify all drug combina-
tions having a score of X(|℘(S)|). This corresponds to a new index family
of elements of |℘(S)| denoted here as RX(|℘(S)|) , where RX(|℘(S)|) = {c|c∈
℘(S), X(|℘(S)|) = F(c), ∀c}. The optimal combination from a tie is then given
by {c| |c|= min{|d| , ∀d∈ RX(|℘(S)|)}}.
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